AUG 30, 2017 10:00 AM PDT
WEBINAR: Understanding cell reprogramming in treatment-resistant prostate cancer using organoids
SPONSORED BY: Thermo Fisher Scientific/Gibco
CONTINUING EDUCATION (CME/CE/CEU) CREDITS: P.A.C.E. CE | Florida CE
8 89 4917

Speakers:
  • Research Affiliate, Postdoctoral, Roswell Park Cancer Institute
    Biography
      Kristine is an expert in prostate cancer and recently published three comprehensive review articles on treatment of advanced prostate cancer and therapy resistance. She began her postdoctoral training at the Roswell Park Cancer Institute in January 2015 to study protein degradation of androgen receptor (AR), one of the factors that drives treatment-resistant prostate cancer. In September 2016, Kristine continued her training in a different laboratory at Roswell Park Cancer Institute to study how loss of the tumor suppressor retinoblastoma 1 (Rb1) promotes prostate cancer progression, continuing a project that the laboratory recently published in Science.

      Kristine completed both a BS in Molecular Genetics and a BA in English with a concentration in Theater at the University of Rochester in 2009, graduating Magna Cum Laude and Phi Beta Kappa. Kristineimmediately began PhD graduate training in Pathology at the University of North Carolina at Chapel Hill, defending her dissertation in 2014. Her dissertation focused on protein degradation pathways in cardiac and skeletal muscle diseases and was funded by a predoctoral grant awarded by the American Heart Association. Kristine received predoctoral trainee travel grants from both the American Society for Investigative Pathology and American Physiological Society to present her dissertation work at national meetings. Recently, her study of thyroid hormone signaling in cardiac growth was awarded a Journal Award by the Society for Endocrinology for being one of the five best papers published by its journals in 2016.

      Being a first-generation student, Kristine is dedicated to community outreach. Especially in teaching young students with similar backgrounds about opportunities in science, technology, engineering, and math (STEM). In March 2017, Kristine was awarded a mentorship award by the Western New York STEM Hub, a non-profit organization dedicated to K-12 STEM education.

    Abstract:

    DATE: August 30, 2017
    TIME: 10:00am PT, 1:00pm ET

    Recent studies show that cancer cells can resist treatment by changing into a different cell type. Many treatments for specific cancers, such as breast, prostate, or lung, target vital pathways active in healthy tissue. The reliance of cancer cells on these pathways suggest that they retain properties of healthy cells. A prominent example of targeted treatment is androgen deprivation therapy for advanced prostate cancer. This therapy limits the production and effectiveness of androgen hormones because prostate cancer cells depend on androgen hormones, just like their healthy counterparts. Prostate cancers that become resistant to multiple rounds of therapy often no longer express the target of therapy. These resistant or ‘reprogrammed’ tumor cells are more likely to express different cell lineage markers. These markers are expressed by neuroendocrine cells, a rare cell type in healthy and untreated cancerous prostate tissue. Once prostate cancer cells are reprogrammed, current therapies are ineffective and patients quickly succumb to their disease. Our laboratory studies reprogramming in prostate cancer cells with the aim of developing new drugs to treat these resistant patients. We use murine models and 3D organoid culture of murine and human tumors to understand how prostate cancer cells acquire the ability to reprogram and become resistant. Organoid culture is a valuable tool in our research because it allows the formation of structures that include multiple cell types. In the future, we will use organoids of aggressive prostate cancer in screens of drug candidates and assess drug effectiveness in weeks, rather than the months or years required for classic in vivo studies. 

    Learning Objectives:

    • Understand the benefits of 3D organoid culture on modeling cancer
    • Learn about prostate cancer cell reprogramming and how the understanding of this can lead to improved therapies
       

    Show Resources
    Loading Comments...